Your lecturers

12pm Adam Bridgeman

Room 316 asaph.widmer-cooper@sydney.edu.au

Room 543A adam.bridgeman@sydney.edu.au

Chemistry 2

Quantum Mechanics in Chemistry Lecture 1

Revision – H₂⁺

At equilibrium, we have to make the lowest energy possible using the 1s functions available

Revision $-H_2^+$

- Near each nucleus, electron should behave as a 1s electron.
- At dissociation, 1s orbital will be exact solution at each nucleus

П П 1s_A anti-bonding anti-bonding bonding bonding Revision – H₂⁺ 1s_B $1s_B$ ¥ Ψ Ψ ¥ $1s_A$ $\Psi = 1s_A - 1s_B$ $\Psi = 1s_A + 1s_B$ $\Psi = 1s_A + 1s_B$ $\Psi = 1s_A - 1s_B$ 1s_B 1s_B $1s_B$ $1s_B$

2nd row homonuclear diatomics

 $Revision - H_2$

Now what do we do? So many orbitals!

2p 2s

2p

2s

Revision – He₂

Interacting orbitals

 Orbitals interact proportionally to the inverse of their energy difference. Orbitals of the same energy interact completely, yielding completely mixed linear combinations.

Interacting orbitals

Orbitals can interact and combine to make new approximate solutions to the Schrödinger equation. There are two considerations:

1.Orbitals interact **inversely** proportionally to their **energy difference**. Orbitals of the same energy interact completely, yielding completely mixed linear combinations. In quantum mechanics, energy and frequency are related (E=hv). So, energy matching is equivalent to the phenomenon of **resonance**.

2.The extent of orbital mixing is given by the **resonance integral** β . We will show how beta is calculated in a later lecture.

Molecular Orbital Theory - Revision

(First year) MO diagram

Orbitals interact *most* with the corresponding orbital on the other atom to make perfectly mixed linear combinations. (we ignore core).

Interacting orbitals

1. The extent of orbital mixing is given by the integral

$$\beta$$
 = something

The 2s orbital on one atom *can* interact with the 2p from the other atom, but since they have different energies this is a smaller interaction than the 2s-2s interaction. We will deal with this later.

1s

Molecular Orbital Theory - Revision

Can predict bond strengths qualitatively

More refined MO diagram

 $\boldsymbol{\sigma}$ orbitals can now interact

Interacting orbitals

1. The extent of orbital mixing is given by the integral

1s

The positive-positive term is cancelled by the positive-negative term

15

More refined MO diagram

 $\boldsymbol{\pi}$ orbitals do not interact ۹

 $2p\pi^*$

 $2p\sigma^*$

$$2p\sigma$$
 σ σ σ

 $2s\sigma^*$

$2s\sigma$

More refined MO diagram

 σ^* orbitals can interact σ^*

 $2p\sigma$

$$2s\sigma^*$$
 σ^*

sp mixing

Largest energy gap, and

More refined MO diagram

Learning outcomes

- energy difference, and the resonance integral, β . •Use the principle that the mixing between orbitals depends on the
- structure in simple organic molecules. •Apply the separation of σ and π bonding to describe electronic
- molecules in terms of s-p mixing. • Rationalize differences in orbital energy levels of diatomic

sp mixing

Practice Questions

- Why is s-p mixing more important in Li₂ than in F₂?
- How many core, $\sigma\text{-bonding,}$ and $\pi\text{-electrons}$ are there in
- a) acetylene
- ethylene

benzene

d) buckminsterfullerene

Check that your total number of electrons agrees with what is expected (6 per carbon, 1 per hydrogen).

Next lecture

 Particle in a box approximation solving the Schrödinger equation.

Week 10 tutorials

 Wavefunctions and the Schrödinger equation.

weakly bound

paramagnetic

diamagnetic

B₂

 $\frac{\mathsf{N}}{\mathsf{N}}$